3种杀螨剂生物测定 方法的比较研究

张永强, 丁 伟, 吴 静, 赵志模 (西南大学植物保护学院, 重庆 400716)

Comparison of Three Acaricide Bioassay Methods

Zhang Yongqiang, Ding Wei, Wu Jing, Zhao Zhimo (College of Plant Protection, Southwest University, Chongqing 400716, Chian)

Abstract: In acaricides study, common slide dip method or leaf dip method was not met with the rapid acaricidal activity screening of minim substances. Based on the slide dip method, applying directly to mite individually by glass drop-sample capillary would help solve this problem effectively. In this paper, the acarcidal activities of 4 solvents and water extracts of Atemisia annua L. and pyridaben were compared by three bioassay methods, slide dip method, leaf dip method and slide-capillary method in laboratory. The results showed that the effect of slide-capillary method was close to the slide dip method, but the dosage of slide-capillary method was just millesimal of slide dip method, which was significant to the study of botanical acaricide and biopesticide.

Key words: slide-capillary method; acaricides; Artemisia annua L.; pyridaben

摘 要:在杀螨剂研究中,常规的玻片浸渍法或叶片浸渍法都无法满足微量物质的快速测定工作。在玻片浸渍法的基础上,采用玻璃点样毛细管对螨体直接施药,解决了这一问题。文中比较了玻片浸渍法,叶片浸渍法及玻片毛细管法3种测定方法对用4种溶剂和水提取的黄花蒿的提取物和常用杀螨剂哒螨灵对朱砂叶螨的作用效果,结果证实了采用玻片毛细管法测定的结果与玻片浸渍法的结果相近,但其用药量降低了1000倍,这对植物源杀螨剂以及生物农药研究都有重要意义。

关键词:玻片毛细管法:杀螨剂:黄花蒿:哒螨灵

中图分类号: S482.5 文献标识码: A 文章编号: 1002-5480(2007)07-50-04

生物测定方法对农药的研究与开发具有重要意义,发现新的生物测定方法对新农药的发现和开发至关重要^[1]。不同的生物测定方法能体现出不同的作用方式,因而从某种意义上来说,发现新的生物测定方法就等同于发现新农药。

生物农药在目前情况下,符合当前环保、高效、低毒的要求,是绿色农药的重要组成部分。而生物农药的研究过程中,得到化合物的量往往很少,普通的生物测定方法因为需要样品量过大,使得活性物质的发现受到很大限制,尤其

收稿日期: 2007-04-18

朱砂叶螨 (Tetranychus cinnabarinus Bois.) 是广泛分布在我国棉花和多种蔬菜上危害严重 而又难于防治的1种害螨, 也是1种农药科学研 究中常见的供试螨类49。然而目前使用的杀螨剂 大都为化学药剂、易造成环境污染、害虫再猖 獗和抗性等问题,因而迫切需要安全、高效、 低毒、污染少等特点的杀螨剂。从中药植物中 寻找杀螨活性物质也是重要的途径之一吗。黄花 蒿 (Artemisia annua L.) 是菊科一年生草本植 物,在我国各地都有分布,生态适应性非常广, 常生于山坡、林地、荒地、具有广泛的农用生 物活性[6-7]。本文选择用4种溶剂和水提取黄花蒿 的5种提取物和哒螨灵为供试药品,以朱砂叶螨 为供试对象,并与玻片浸渍法和叶片浸渍法相 对比, 以期探讨玻璃点样毛细管在植物源杀螨 剂研究中的应用价值。

1 材料与方法

1.1 试验材料

1.1.1 供试螨类 朱砂叶螨敏感品系。最初采自重庆市北碚区田间的豇豆苗上,在人工气候室内26±1℃、60%~80%相对湿度、光照条件L:D=14h:10h下用盆栽虹豆苗饲养了多年所获得的品系。

试验前栽种一批整齐的豇豆苗,往每株苗

子上挑朱砂叶蝴雌成螨15只,任其产卵12h,移 去成螨。待螨卵孵化之后,同样条件下培养8~ 9d作为供试生物。

1.1.2 试验设备 玻璃点样毛细管 (内径0.5mm, 长100mm, 华西医科大学仪器厂), 双目镜, 滤纸, 载玻片, 双面胶等。

1. 1. 3 供试药剂 黄花蒿提取物,2006年6月在西南大学周边采集黄花蒿野生种,样本经由西南大学园艺园林学院李先源教授鉴定。收集黄花蒿植株叶片,洗净,置于60℃烘箱烘干,小型粉碎机粉碎,过60目筛。称取5份等量粉碎物,分别加入一定量的30~60℃石油醚、60~90℃石油醚、乙醇、丙酮(均为分析纯)和水,抽滤后减压浓缩获得各平行粗提物。置于冰箱中冷藏备用。

95%哒螨灵原药,由南京红太阳股份有限公司提供。加入少量的甲醇溶解后,用水稀释到相应浓度。对照在清水中加入等量的甲醇。

1.2 试验方法

1.2.1 玻片毛细管法 将双面胶剪成3cm长,贴在载玻片的一端,用镊子揭去胶带上的纸片,用零号毛笔挑选事先准备好的、健康活泼、整齐一致的朱砂叶蝴雕成螨。将其背部粘在双面胶带上,每片2行,每行20只左右。在同饲养条件下放置4h后,用双目镜观察,剔除死亡或赤件下放置4h后,用双目镜观察,剔除死亡或不活泼的个体,记载实际的螨的个数,作为供试基数。药剂浓度根据事先预试的基础上确定5~7个浓度,选择使用内径为0.5mm玻璃点样毛细管,利用虹吸现象吸取微量药液,在双目镜下,将药液直接点于螨体。同饲养条件下放置3d,每12h检查1次结果,以毛笔轻触螨体,螨螯肢不动者为死亡,以浸渍清水加相应量的乳化剂和溶剂的溶液为对照。

1.2.2 玻片浸渍法方法 参照FAO推荐的测定 害螨抗药性的标准方法,并加以改进¹⁵。所得数据经Finney机率分析法求出毒力回归式及LC₅₀及其95%的置信区间¹⁸。

1.2.3 叶片浸渍法 采用植株叶片带螨浸渍于 药液,测定杀螨生物活性的测定方法,具体操作

步骤参见孟和生介绍[4]。

2 结果与分析

2.1 不同处理方法对药剂剂量的要求 在植物源农药研究中,有些可能的有效成分的含量很低,常规的柱层析有时可能无法分离开这些成分;借助薄层层析分离可以在一定程度上弥补这一不足,但薄层层析分离得到的微量物质,常规的农药生物测定方法也不能完成微量物质的生物测定。以常见的植物源农药初筛浓度5mg/mL计算,完成玻片浸渍法至少需要5~10mL药液,相应的需要25~50mg的物质,而叶片浸渍法至少需要50~75mg,这不利于快速的决断出物质是否具有杀螨活性。玻片毛细管法所需药量为仅0.025~0.05mg(见表1),利用1到2次的薄层层析

就很容易得到这个剂量。这对植物源农药研究, 特别是植物源活性物质分离纯化、活性追踪具 有重要意义。

表1 不同处理方法对药剂剂量的要求

	生测方法	药液浓度	完成试验需要	相对应的
			的最低药液量	药剂剂量
	玻片毛细管法	5mg/mL	0.005~0.01mL	0.025~0.05mg
	玻片浸渍法	5mg/mL	5~10mL	25~50mg
	叶片浸渍法	5mg/mL	10~15mL	50~75mg

为验证这种方法的准确性,我们选择了黄花蒿6月份叶的5种提取物(药液浓度均为5mg/mL)和常用杀螨剂哒螨灵(0.4mg/mL)为供试药剂,比较了玻片浸渍法、叶片浸渍法和玻片毛细管法对生测结果的影响。结果见图1。

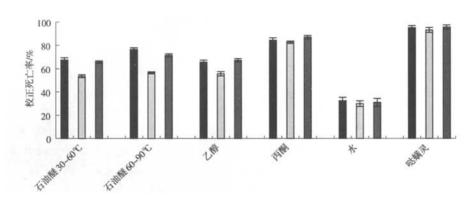


图1 不同生物测定方法测定的黄花蒿提取物及哒螨灵的杀螨活性 (48h)

注:每处理3根柱形从左至右分别代表玻片浸渍法、叶片浸渍法和玻片毛细管法

2.2 不同处理方法对生物测定结果的影响 从图1中看出,在黄花蒿的5种提取物中以丙酮的活性最高,平均都在80%以上,玻片浸渍法与玻片毛细管法无明显差异 (F=19, df=2, 6)。哒螨灵对朱砂叶螨的校正死亡率都在93%以上。对其他提取物的生物测定结果也同样表现出这一趋势。由此可见,采用玻片毛细管法可以应用于植物源杀螨剂的生物测定工作。所得结果接近于联合国粮农组织FAO推荐使用的玻片浸渍法。但其优点在于其用药量减少了将近1000倍,利于杀螨活性物质的快速筛选,大大减少了植物源杀螨剂研究中的溶剂消耗和时间消耗。

分别用上述3种方法进行生物测定,根据初

筛的浓度确定了一系列的药剂浓度,对效果较好的丙酮提取物和哒螨灵进行了进一步的毒力回归分析,所得结果列于表2。从中可以看出,采用玻片浸渍法测定的丙酮提取物对朱砂叶螨的LC₅₀为0.383 2mg/mL,而施用玻片毛细管法测出的是0.403 5mg/mL。从哒螨灵的测定结果看,玻片毛细管法测定出的LC₅₀ (0.050 9mg/mL) 低于玻片浸渍法测定的结果 (0.064 7mg/mL),原因可能是前者的施药方式更为直接,增加了哒螨灵有效成分对螨体的作用的结果。

3 讨论

常规杀螨剂生物测定一般是利用药液跟供 试生物的全面接触,在施药过程中容易造成不

+ •	了 B & 收测点	/ 40L \	
表2	不同生物测定方法测定的黄花蒿丙酮提取物及哒螨灵杀螨活性毒力回归比较((40II)	,

方法	处理	毒力回归直线	相关系数	LC50及其95%置信限
outs 11 MH Ndr Nts	丙酮提取物	y=1.843 5+1.221 8x	0.978 1	0.383 2 (0.257 6~0.570 2)
玻片浸渍法	哒螨灵	y=2.566 5+1.343 6x	0.951 9	0.064 7 (0.023 9~0.175 6)
叶片浸渍法	丙酮提取物	y=2.589 0+0.891 1x	0.971 4	0.507 7 (0.183 6~1.403 8)
	哒螨灵	y=3.334 6+1.223 5x	0.965 7	0.075 3 (0.032 4~0.155 6)
and the second second second	丙酮提取物	y=3.030 6+0.755 7x	0.967 3	0.403 5 (0.237 9~0.684 4)
玻片毛细管法	哒螨灵	y=4.046 7+0.558 5x	0.978 3	0.050 9 (0.009 0~0.287 4)

必要的浪费,在生物农药研究中,分离得到的有效成分可能很少,常规的农药生物测定方法不能完成微量物质的生物测定。以常见的植物源农药初筛浓度5mg/mL计算,玻片毛细管法所需药量为仅0.025~0.05mg,利用薄层层析就很容易得到这个剂量。这对生物农药研究,特别是植物源活性物质分离纯化、活性追踪具有重要意义。

玻片毛细管法测定的结果与FAO推荐使用的玻片浸渍法无明显差异 (F=19, df=2, 6)。对哒螨灵和其他提取物的生物测定结果同样表现出这一趋势。由此可见,玻片毛细管法可以应用于植物源杀螨剂生物测定。而今,尽管玻片浸渍法仍被认为是测定害螨抗药性的标准方法,但近年来在国外很少将其应用于叶螨室内生物测定。取而代之的是寻找更方便,更能反映药剂的旧间药效的生测方法。玻片毛细管法使得药剂的作用方式更为直接,更能体现药剂本身的作用效果,并且其用药量较玻片浸渍法减少了将近1000倍,利于杀螨活性物质的快速筛选。

参考文献

- [1] 李树正. 农药生物测定方法及其问题 [J]. 农药译丛, 1990, 12 (5): 48~51.
- [2] 赵祖培. 微量浸液法生物测定: 药剂局部处理叶螨的 新方法 [J]. 农药译丛, 1994, 16 (4): 25~30.
- [3] Dennehy T J, Leigh T F, Leigh T F. Relevance of slidedip and residue bioassay comparisons to detection of resistance in spider mite [J] . J Economic Entomology, 1983, 76: 1225~1230.
- [4] 孟和生. 两种生物测定方法对杀螨剂毒力测定结果的 影响比较 [J]. 植物保护, 2002, 28 (3): 49~51.
- [5] 张永强, 丁伟, 赵志模, 等. 姜黄对朱砂叶螨的生物 活性 [J]. 植物保护学报, 2004, 31 (4): 389~394.
- [6] Kordalis S, Aslan I, Calmasur O, Cakir A. Toxicity of essential oils isolated from three Artemisia species abd some of their major components to granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae)
 [J] . Industrial Crops and Products, 2006, 23: 162~170.
- [7] 朱芬, 雷朝亮, 王健. 黄花蒿粗提物对几种害虫拒食性的初步研究 [J]. 昆虫天敌, 2003, 25 (1): 16~19.
- [8] Finney DJ. Probit analysis. 2nd [M]. Cambridge: Cambridge University Press, 1952, p 146~153.

