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Introduction

Abstract The stylet penetration behavior of aphids when feeding on plants is associated
with virus acquisition and inoculation. Aphidius gifuensis (Ashmead) is a primary en-
doparasitoid of Myzus persicae (Sulzer) which is the most efficient vector of plant viruses.
Information about the effects of parasitoid on aphid and virus transmission can provide an
essential foundation for designing effective biological control strategies. This study aimed
to investigate the effects of A. gifuensis on the feeding behavior and potato virus Y (PVY)
transmission ability of M. persicae. The results showed that after M. persicae was para-
sitized by A. gifitensis, the duration of the first probe significantly decreased. Additionally,
A. gifuensis exerted remarkable effects on aphid feeding in phloem ingestion. The contri-
bution of the E1 waveform to the phloem phase was significantly higher in all parasitized
aphids than in the control group. Although the time of infestation increased for parasitized
aphids, the total duration of phloem sap ingestion decreased. Interestingly, the percentage
of time M. persicae spent in the xylem and phloem phases only changed significantly on
day 5. The percent transmission of PVY by the aphids parasitized on day 5 was lower
than that in the control, but no significant differences were detected. The significance
of this work is the demonstration that A. gifuensis can impede the feeding behavior of
M. persicae, which sheds light on the biological basis of A. gifuensis as a natural enemy,
but unfortunately does not provide an immediate solution for disrupting the transmission
of PVY.

Key words Braconidae; electrical penetration graphs; feeding behavior; Myzus persicae;
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agricultural field. Recent studies have shown that the
presence of parasitoids can alter aphid behavior, which

Relationships between agents in multitrophic interac-
tions are complicated. As the primary insect vector
of plant viruses, the behavior of aphid is closely re-
lated to the spread of viruses (Dader et al., 2012). Par-
asitic wasps have long been used in biological con-
trol to mitigate the damage caused by aphids in the
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may indirectly affect virus transmission (Smyrnioudis
et al., 2001; Hodge & Powell, 2008). Hodge and Powell
(2008) showed the dispersal behavior of Acyrthosiphon
pisum parasitized by Aphidius ervi can affect and in-
crease the disease spread. However, in Macrosiphum eu-
phorbiae parasitized by A. ervi, no significant differences
were detected in virus transmission in parasitized and
unparasitized aphids (Calvo & Fereres, 2011). It can be
seen that the specific combinations between parasitoid,
aphid and virus may cause the differences among their
interactions.
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The green peach aphid, Myzus persicae (Sulzer)
(Hemiptera: Aphididae), is a generalist insect herbivore
that can use a wide range of cultivated crops. It can develop
high population densities on many economically impor-
tant crops, such as fruit, cruciferous leaf vegetables and
tobacco (Blackman & Eastop, 2000; Davis et al., 2007).
Mpyzus persicae damages crops directly by feeding on the
vascular bundles of plants and indirectly through the trans-
mission of numerous viral diseases (Loebenstein ef al.,
2001). In the last decade, M. persicae has caused serious
damage to tobacco in China. Potato virus Y (PVY), the
agent of an important viral disease oftobacco, is a member
of the Potyviridae family of viruses. The most efficient
vector of PVY is M. persicae, which transmits the virus in
a non-persistent manner during brief probes of the plant
epidermis (Ragsdale et al., 2001; Hussain et al., 2016).
M. persicae causes more damage as a PVY vector than it
does when directly feeding on crops. Munyaneza (2015)
suggested that the management of insect-transmitted plant
pathogens is critical to minimize disease transmission and
spread in crops. Thus, M. persicae should be managed to
control the occurrence of viral diseases.

Insecticides are commonly used as control measures
to protect crops from M. persicae. As a result of fre-
quent chemical control, M. persicae has evolved numer-
ous strategies to resist commonly used insecticides (e.g.,
imidacloprid) (Elbert et al., 2008). Concurrently, envi-
ronmental concerns have increased interest in alternative
pest control methods. Therefore, other effective and en-
vironmentally friendly methods to control M. persicae
should be identified. Aphidius gifuensis Ashmead (Hy-
menoptera: Braconidae) is a parasitic natural enemy that
attacks agricultural pest aphids, including M. persicae,
Schizaphis graminum (Rondani) and Aulacorthum solani
(Kaltenbach) (Hemiptera: Aphididae) (Yan et al., 2005;
Ohta & Honda, 2010). Aphidius gifuensis exhibits a num-
ber of desirable parasitic attributes, including high host
searching ability, high fecundity, a wide host range, and
adaptation to a wide range of temperatures (Jones et al.,
2003; Ohta & Ohtaishi, 2004). Consequently, 4. gifuensis
is a predominant endoparasitoid attacking M. persicae in
commercial crops (Yamamoto, 1997; Ohta & Ohtaishi,
2004).

Generally, when attacking their hosts, parasitoids lay
their eggs on or in the body of an insect host, which
is then used as food for the developing nymph. The
host is ultimately killed. Before the actual death, sur-
vivors exposed to natural enemies may exhibit behav-
ioral and/or physiological alterations. Mitsunaga et al.
(2016) reported that the lifetime fecundity of M. persi-
cae parasitized by A. gifuensis is 6.40 nymphs, which
is lower than that of control (61.43 nymphs). Moreover,

the growth of the wings of M. persicae is suppressed
when it is parasitized (Liu & Hughes, 1984). Extensive
information regarding the biological and ecological char-
acteristics of the interactions between A. gifirensis and
M. persicae is available, but few studies have examined
the effects of these interactions on the feeding behav-
ior of the aphids and their subsequent virus transmission
efficiency. The feeding behavior of sap-sucking insects
can be monitored electronically using electrical penetra-
tion graphs (EPGs) (Tjallingii, 1978, 1985, 1988). EPG
signals reflect the stylet tip positions within plant tissues
(Tjallingii & Hogen-Esch, 1993) and thus provide detailed
information on the feeding activities of many sap-sucking
insects, such as aphids, thrips, whiteflies, psyllids and
mealybugs (Huang et al., 2012; He ef al., 2015). It is
known that most plant viruses are transmitted by insect
vectors and are dependent on the feeding behavior and
dispersal of their vectors for their spread among plants
(Ng & Falk, 2006; Hogenhout et al., 2008; Fereres &
Moreno, 2009; Sandanayaka et al., 2013). Therefore, the
stylet penetration behavior of insects when feeding on
plants is associated with virus acquisition and transmis-
sion. The common sense of a biological control agent
in a pest/vector model system will generally be assumed
as a way to control the target vector in order to reduce
vector-borne disease in the field. Consequently, natural
enemy-vector-virus interactions should be investigated
to evaluate the continuing spread of insect-transmitted
viruses.

In the present work, we studied the feeding behavior of
parasitized M. persicae to investigate the direct effects of
A. gifuensis on the feeding activities of aphids. In addi-
tion, potted plant experiments were performed to assess
the potential indirect effects of 4. gifuensis on the PVY
transmission efficiency of M. persicae. We employed
EPGs to monitor the behavioral variables of parameters of
M. persicae feeding on tobacco plants. The information
obtained in this paper may contribute to unravel the be-
havioral mechanisms of insect vectors underlying natural
enemies.

Materials and methods
Insects

A strain of A. gifuensis was established from M. per-
sicae mummies on tobacco leaves in our laboratory at
the College of Plant Protection, Southwest University,
Chongqing, China. The M. persicae specimens were orig-
inally collected from a tobacco farm in Chongging (29°59’
N, 106°54’ E) in 2014 and were subsequently placed on
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tobacco plants in a separate climate-controlled room.
Stock cultures of A. gifuensis and M. persicae were
maintained in separate insect-proof screened cages
(400 x 400 x 400 mm) in the laboratory at 25 &+ 1°C,
60% =+ 10% RH, and a 16 : 8 L : D photoperiod. All in-
sects were kept under laboratory conditions for more than
20 generations before the experiments.

Parasitism

Adult A. gifuensis females prefer the second- or third-
instar nymph of aphids (Huang, 1982). Therefore, the
second-instar nymphs of M. persicae were selected as the
parasitic object in our experiment. Before the parasitism
experiment, pairs of 4. gifuensis were individually placed
in glass vials to mate for 30 min. A successfully mated fe-
male 4. gifuensis was then selected for the test. More than
2500 second-instar red M. persicae nymphs were placed
on tobacco seedlings grown in 100 mm diameter plas-
tic pots. Subsequently, the pots were individually placed
in netted plastic cages (400 x 400 x 400 mm). When
the aphids had settled on the leaves, the mated female
A. gifuensis individuals were transferred into the cages
for oviposition at a ratio of 50 aphids to one A. gifitensis.
The parasitoids were removed after 24 h, and the aphids
were maintained under the same conditions as described
above. After set times (3, 4 and 5 d), parasitized aphids
were identified under a binocular microscope. Unpara-
sitized individuals were used as a control group under the
same conditions.

PVY source plants

The tobacco veinal necrotic strain of PVY (PVYN)
was kindly provided by Shandong Agricultural University,
China. We used the tobacco variety Yunyan87 at the four
true-leaf stage. Tobacco plants infected with PVY were
produced by mechanical inoculation of healthy seedlings
with PVYN using the method of Shrestha et al. (2014).
Healthy plants were mock-inoculated to mimic the ef-
fects of mechanical inoculation. These virus sources were
maintained inside climate chambers at 25 & 1°C, 60% =+
10% RH and a 16 : 8 L : D photoperiod. After 12 days,
tobacco plants that showed symptoms were used as the
PVY inoculum for the transmission experiments.

EPG recording

The EPG waveforms were recorded using a DC-
EPG Giga-4 instrument (EPG systems, Wageningen
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University, the Netherlands) with 10° Ohm input resis-
tance on healthy tobacco plants in the four true-leaf stage.
Before recording, apterous aphids were removed from
healthy plants after parasitized by A. gifuensis on days 3,
4 and 5. Unparasitized aphids were used as the control
group. Subsequently, the aphids were individually con-
nected via their dorsum to a gold wire (15 um diameter;
20-30 mm length) using a droplet of water-based silver
glue and were connected to the input probe of the EPG.
The other electrode was placed in the soil of each pot-
ted plant. The aphids were starved for 1 h between the
time of wiring and the beginning of EPG monitoring and
were then placed on the abaxial side of the youngest fully
expanded leaf of the tobacco seedlings. The host plants,
insects and EPG probes were maintained inside a Faraday
cage to avoid electrical noises. EPGs were continuously
recorded for 6 h with a fresh insect and a new host plant for
each replicate. We recorded 15 aphids for each treatment.
All experiments were performed at 25 4+ 1°C and 60% =+
10% RH. The acquired data were recorded by Stylet+ for
Windows software (EPG Systems, Wageningen Univer-
sity, the Netherlands), and all behavioral variables were
processed using the EPG-Excel Data Workbook devel-
oped by Sarria et al. (2009).

PVY transmission experiments

This experiment aimed to detect the effect of
A. gifuensis on the transmission of PVY from and to to-
bacco plants by parasitized M. persicae. We used PVY and
the same aphid/plant combination previously described.
Aphids parasitized on day 5 were selected as the test
object, and unparasitized individuals were used as the
control. In this study, we selected the tobacco variety
Yunyan87 as the test plants, and plants inoculated with
PVY were used as the virus source. All virus source plants
and test plants were kept in wooden cages covered with
aphid-proof netting in different compartments of a room
at 25 & 1°C and a photoperiod of 16 : 8 L : D. Plants
with four expanded leaves were used in the transmission
assays.

A total of 1200 M. persicae individuals were placed
in glass vials for a 1 h starvation period. Batches of
aphids were transferred to the upper side of a leaf on
a virus source plant for a 10 min acquisition access period
and subsequently moved onto the test plants (10 aphids
per plant) for a 10 min inoculation access period. These
aphids were removed from the test plants and killed by im-
idacloprid after the inoculation period. In each treatment,
20 tobacco test plants were used, and the assay was repli-
cated three times. After the transmission assays, the test
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plants were retained in the previously described cages
for approximately 4 weeks until the visual inspection of
symptoms.

Statistical analyses

The EPG waveforms were categorized as previously
described (Tjallingii, 1994; Zeng et al., 2016). Seven
distinct waveforms were identified in this study: np, C,
potential drop (pd), F, G, E1 and E2. The EPG signals
were recorded and exported using the software PROBE
3.4 (Wageningen University, The Netherland) in Windows
XP. In total, 17 non-phloem phase parameters and 11
phloem phase parameters were calculated and compared
among the four treatments. Some EPG variables did not
follow a normal distribution, and thus, normality and
homogeneity of variance were assessed prior to analysis.
The duration and percentage of each EPG variable were
transformed using log;o(n + 1) and arcsine, respectively,
to satisfy the assumption of normality. The feeding
behavior data were statistically analyzed using one-way
analysis of variance and the least significant difference
test at a significance level of 0.05 (P-value = 0.05).
Fisher’s exact test was used to evaluate the significance
in the difference in proportions of individuals performing
each type of activity. The transmission rate of PVY
was compared by an independent-samples #-test. All
statistical analyses were done with IBM SPSS Statistics
17.0 (IBM Corp., Armonk, NY).

Results
Probing and feeding behavior of parasitized aphids

In the present study, as shown in Figure 1, four behav-
ioral phases were identified during aphid probing. Each
phase contained one or more waveforms: (i) non-probing
(waveform np, which indicates the absence of stylet con-
tact with the plant tissue); (ii) the pathway phase (includ-
ing waveforms C, F and pd, which represent an intercellu-
lar stylet pathway, stylet penetration difficulty mechanics,
and brief intracellular stylet punctures, respectively); (iii)
the xylem phase (waveform G); and (iv) the phloem phase
(including waveforms E1 and E2, which reflect saliva into
the sieve element and passive phloem sap ingestion, re-
spectively).

Parasitized aphids had different behavior than control
aphids on several EPG variables related to pathway phase,
xylem phase and phloem phase (Table 1). There were dif-
ferences on the behavior depending on days of parasiti-
zation. Three and four days parasitized aphids increased
the number of probes and short probes (C < 3 min) than

that of control and aphids of 5 d parasitized, although
these differences were statistically significant only on day
4 (Table 1, variables 2 and 3). No differences were ob-
served in total duration of np, number of probes to the
first E1, duration of F, number of G, time to first probe
from the start of EPG, duration from the first C to the first
pd, number of pd, mean duration of pd, and total duration
of C waveforms among the groups (Table 1, variables 1,
5, 7 and 8, and Table S1, variables 1-5). Independently,
on the day after the aphids had been parasitized, they
had shorter duration of first probe than control aphids
(Table 1, variable 4). Aphids on day 5 had increases in the
number of F and duration of G (Table 1, variables 6 and 9).

A. gifuensis significantly affected the feeding activities
of M. persicae in feeding on phloem phase compared with
the control. Aphids parasitized on day 5 had decreases
on the individual percent with E1 and E2 waveforms and
on the duration of the first E (Table 1, variables 13 and
14). The time from first probe to first E2 did not differ
among the four treatments (Table 1, variable 16). During
the E1 period, the number of E1 occurrence and total
duration of E1 waveforms were lower in unparasitized
aphids than in parasitized aphids on days 3 and 4 (Table 1,
variables 10 and 11). In addition, the contribution of
time (percentage) of El to the phloem phase was also
significantly lower in the control group than in the
parasitized aphids (Table 1, variable 12). When M.
persicae began to ingest phloem, the EPG exhibited a
typical E2 waveform. The number of E2 waves was only
reduced in aphids parasitized on day 5, whereas aphids
parasitized on days 3 and 4 were increased compared with
unparasitized ones (Table 1, variable 15). Additionally,
the number of sustained E2 (>10 min) and total duration
of E2 waveforms were reduced significantly in aphids
parasitized on day 5 (Table 1, variables 17 and 18).

Compared with the control group, the percentage
of time in the xylem phase significantly increased in
aphids parasitized onl day 5 (Fig. 2, % in G). Although
the time of infestation increased for parasitized aphids,
the percentage of time spent salivating in the phloem
phase decreased (Fig. 2, % in E1). Additionally, the per-
centage of time spent ingesting in the phloem phase de-
creased gradually from 36.40% in the control aphids to
8.05% in the aphids parasitized on day 5 (Fig. 2, % in
E2). There were no significant differences in percentage
of time in the pathway phase among the four treatments
(Fig. 2, % in C and F).

PVY transmission by aphids

The percent transmission of PVY by the aphids para-
sitized on day 5 was 22.67%, which was lower than that in
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Fig. 1 (A) Typical electrical penetration graph (EPG) waveforms of Myzus persicae when feeding during 1 h on tobacco and (B-F)
characteristic waveforms in detail. C, pathway phase; F, derailed stylet mechanics; G, xylem ingestion; E1, phloem salivation; and E2,

phloem ingestion.

the control group (28.33%), but no significant difference
was detected (P > 0.5).

Discussion

Aphidius gifuensis is a primary endoparasitoid against
M. persicae in agricultural fields. Thus, the biological
and ecological characteristics of A. gifuensis in relation to
its use as a biological control agent against M. persicae

© 2017 Institute of Zoology, Chinese Academy of Sciences, 00, 1-10

have been studied previously by other authors (Ohta et al.,
2001; Takayuki ef al., 2016). These studies have mainly
concentrated on the fertility, longevity, host range and
temperature dependence of this species (Fukui & Takada,
1988; Ohta & Ohtaishi, 2004). Such information is useful
for the rational utilization of A. gifuensis in controlling
the population dynamics of aphids. Because it is an ef-
ficient vector of many viral diseases, further information
is required on the specific characteristics of M. persicae
parasitized by A. gifuensis, particularly in regard to its
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Fig. 2 Mean (& SE; n = 15) percentage of the total time spent ingesting in the pathway, xylem and phloem phases by unparasitized
and parasitized Myzus persicae aphids on tobacco. A: unparasitized aphids; B: aphids parasitized on day 3; C: aphids parasitized on

day 4; D: aphids parasitized on day 5.

feeding behavior and virus transmission efficiency. In the
present study, we analyzed the effects that A. gifuensis
on M. persicae feeding behavior. Moreover, the exper-
iment was coupled with research on PVY transmission
after parasitization.

As shown in Table 1, the parasitized aphids exhibited a
significantly shorter duration of the first probe compared
with the control group (Table 1, variable 4), thus indi-
cating that M. persicae, once parasitized by A. gifuensis,
became less efficient from the beginning of the pathway
phase. In addition, the number of F events, total duration
and the percentage of time spent having stylet penetra-
tion difficulties by M. persicae after parasitization were
higher than those of the control (Table 1, variables 6 and
7, and Fig. 2, % in F). These results indicated that aphids
parasitized by A. gifitensis experienced more obstacles
in the intercellular stylet pathway to reach the phloem.
Waveform G is associated with the active ingestion of
fluid from xylem vessels in aphids (Spiller et al., 1990).
Pompon et al. (2010) found that xylem ingestion may help
insects resist dehydration. In our study, the total duration
and percentage of time spent drinking from the xylem
produced by parasitized aphids on day 5 were longer and
higher, respectively, than those produced by the control
group (Table 1, variable 9, and Fig. 2, % in G). This result

© 2017 Institute of Zoology, Chinese Academy of Sciences, 00, 1-10

demonstrates that parasitized aphids on day 5 may need
to ingest a larger amount of xylem sap to maintain their
water balance.

Successful phloem feeding requires overcoming a num-
ber of phloem-related plant properties and reactions
(Tjallingii, 2006). Proteins in aphid saliva play an impor-
tant role in feeding activities, countering sieve plate oc-
clusion, and for some species, resistance factors in plants
(Will & van Bel, 2006; Hogenhout et al., 2009). The dis-
ruption of the symbiosis of M. persicae with Buchnera
aphidicola negatively affects the feeding behavior pro-
ducing changes on it physiology, which leads to imped-
ing host plant acceptance (Machado-Asseth & Alvarez,
2016). In the present study, the contribution of E1 to the
phloem phase (%) in parasitized aphids changed signifi-
cantly (Table 1, variable 12). Aphids rely on the phloem
sap ingested from plants as their only source of nutrients.
On day 5 in the parasitized aphids, the duration of the first
E and total duration of the E2 waves were significantly
reduced (Table 1, variables 14 and 18). The changes found
on the aphid behavior regarding salivation (E1 waveform)
and ingestion (E2 waveform) on phloem sieve elements
after being parasitized by A. gifuensis could be related
with changes occurring in the aphid leading to a constraint
on host plant acceptance. Additionally, compared with the
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control, the total duration of E2 in aphids parasitized on
days 3 and 4 was also reduced, but the difference was not
statistically significant. This phenomenon may be related
to the growth and development of A. gifuensis. During
the early process of development, nymphs of 4. gifuensis
need nutrition supplied by the aphids, which causes the
aphids to ingest more phloem sap from tobacco plants
and may explain why the phloem ingestion time of aphids
parasitized on days 3 and 4 was not obviously shortened.
Similarly, Couchman and King (1979) also found that
the food uptake of Brevicoryne brassicae parasitized by
Diaeretiella rapae do not differ compared with unpara-
sitized aphids when the parasitoids developed in aphids at
the embryonic and second-instar nymph stages. However,
feeding decreased remarkably when the third-instar stage
is reached.

The transmission experiments showed that the trans-
mission of PVY by M. persicae parasitized on day 5 was
not significantly reduced compared with the control. In
a previous study, two of the pd (intracellular stylet punc-
tures) subphases, that is, II-1 and II-3, which are asso-
ciated with salivation and ingestion events, were experi-
mentally demonstrated to be related to the inoculation and
acquisition of non-persistent viruses, respectively (Martin
et al., 1997; Powell, 2005). In addition, the transmission
of Cucumber mosaic virus by Aphis gossypii requires the
occurrence of the pd waveform, and the virus transmis-
sion efficiency is positively correlated with the number
of pd (Zhang et al., 2001; Wang et al., 2003). In our
experiments, no significant differences were observed in
the number of pd and mean duration of pd between the
control and parasitized aphids (Table S1, variables 3 and
4). This result indicates that A. gifuensis does not imme-
diately disrupt the transmission of PVY by affecting pd
parameters in the parasitized aphids.

Persistent aphid-transmitted viruses are acquired from
plants by aphids performing passive phloem ingestion (E2
waveform) and are inoculated into plants by salivation into
the phloem sieve elements (E1 waveform) (Zeng et al.,
2016). In the present study, reductions in the proportion
of individuals that produced E1 and E2 waveforms, on
the duration of the first E waveform, on the total duration
of the E2 waveform, and the percentage of time spent
ingesting in the phloem phase were obtained when aphids
parasitized on day 5 fed on the plants (Table 1, variables
13, 14 and 18, and Fig. 2, % in E2). Although A4. gifuensis
reduced the feeding activities of M. persicae on phloem
phase, this alteration would not be expected to reduce the
transmission of persistently transmitted viruses. Calvo
and Fereres (2011) suggested that Aphidius ervi did
not affect the Turnip yellows virus transmission rate of
Macrosiphum euphorbiae underlaboratory conditions.

Additionally, parasitoid performance is negatively
affected by the presence of a circulative virus within the
vector’s body. Compared with the control, some phloem-
feeding variables of M. persicae that were parasitized on
days 3 and 4 were reduced, but no significant differences
were detected. Thus, we infer that the transmission
efficiency also showed no obvious change. However,
the wings of M. persicae did not develop normally
after being parasitized by 4. gifuensis. This information
clearly shows that despite the limited effect on the spread
of the virus caused by the way A. gifuensis reduces
M. persicae feeding behavior, parasitism can still
decrease the transmission of diseases by reducing aphid
movement and the spread of these vectors within and
between fields (Chen et al., 2016).

In conclusion, this study revealed the effects of A.
gifuensis on the feeding behavior and PVY transmission
ability of M. persicae on tobacco plants. The results
showed that 4. gifuensis exerted adverse effects on aphid
feeding, but the transmission of viruses was not signifi-
cantly reduced. Therefore, considering that the effects of
parasitism by A. gifuensis on aphid virus transmission via
feeding behavior are limited, we suggest that this method
for the prevention of this viral disease should be combined
with other control methods. Furthermore, the assessment
of the influence of 4. gifuensis on the ability of aphids to
transmit viruses in the laboratory is insufficient, and these
conclusions should be verified under field conditions.
The use of natural enemies to control pests is likely
to increase in the future. Therefore, understanding the
effects of 4. gifuensis on M. persicae feeding activities
and its virus transmission ability could add to the
knowledge of insect-virus interactions under the effects
of natural enemies. In addition, this new knowledge
has the potential to help develop new strategies for the
biological control of aphids and viral diseases.
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