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The carmine spider mite Tetranychus cinnabarinus is a major pest of crop and vegetable plants worldwide. Previous studies have
shown that scopoletin is a promising acaricidal compound against Tetranychus cinnabarinus. However, the acaricidal mechanism
of scopoletin remains unclear. Experimental evidence has shown that scopoletin inhibits development of Tetranychus cinnabarinus,
indicating that scopoletin may affect degradation of chitin by regulating the expression of chitinase (CHIT) gene. We observed via
RNA-seq that differential expression of the CHIT gene family may be involved in the acaricidal mechanism of scopoletin against
Tetranychus cinnabarinus. In the present study, 12 full-length cDNAs of CHIT genes from Tetranychus cinnabarinus (designated
TcCHITs) were cloned and characterized. Although TcCHITS were expressed throughout all life stages, their expression levels
were significantly upregulated during the larval and nymphal stages. TcCHITs were downregulated 24 h after treatment with
scopoletin and upregulated 24 h after treatment with diflubenzuron (DFB, a chitin synthesis inhibitor). Feeding double-stranded
RNA effectively silenced TcCHIT transcription in Tetranychus cinnabarinus, thus increasing its susceptibility to scopoletin but
reducing that to DFB. Meanwhile, TcCHIT silencing in larvae and adult resulted in an extremely low molting rate (73%) and high
mortality rate (53.3%), respectively, compared with those in the control group. The present results provide the first evidence that
TcCHIT downregulation increases susceptibility to scopoletin but reduces that to DEB. CHIT genes are closely related to arthropod
survival, molting, and development in Tetranychus cinnabarinus, suggesting that acaricidal mechanisms of scopoletin and DFB may
occur by inhibition and activation of CHIT gene expression, respectively. TcCHIT constitutes a possible target of scopoletin and
DFB in Tetranychus cinnabarinus.

1. Introduction

Phytophagous mites of the genus Tetranychus and Panony-
chus are major pests on plants worldwide [1, 2]. The carmine
spider mite Tetranychus cinnabarinus is of particular impor-
tance, because this extreme generalist species has been
documented on more than 100 plant species, including food
and economic crops, ornamental plants, and weeds [3-5].
Cinnabar spider mite is parthenogenic and exhibits strong
fecundity and adaptability. This mite is also one of the pests
that are most difficult to control because it easily develops
resistance to pesticides [6].

Control of Tetranychus cinnabarinus in open-field crops
primarily relies on synthetic chemical acaricides [2, 7-9].
Chemical acaricides have been extensively used to control

mite pests because of their quick and efficient acaricidal
effect [10]. However, spider mites rapidly develop resistance
to almost all acaricidal agents, presenting a major factor
that threatens efficient control of spider mites in agriculture
(11, 12]. Furthermore, application of chemical acaricides has
led to environmental and human health concerns [13]. Thus,
controlling mite pests by traditional chemical acaricides
has become challenging. Effective methods for controlling
mite pests and environment-friendly acaricides should be
developed. Phytogenous acaricides, which present low mam-
malian toxicity and can be rapidly degraded, are suitable for
integrated mite management. Studies have also shown that
these naturally occurring products may delay development of
pesticide resistance in pests [14, 15].
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FIGURE 1: Domain architecture of putative chitinases of T. cinnabari-
nus. Blue boxes: signal peptide; yellow boxes: catalytic domain; green
boxes: chitin-binding domain; red boxes: transmembrane span; red
circles: the N-glycosylation sites; lines: linker regions.

Scopoletin, a coumarin compound, is an important sec-
ondary plant metabolite and phytogenous acaricidal com-
pound with excellent contact-killing, systemic, repellent, and
oviposition inhibition activities against Tetranychus cinnabar-
inus [16]. Studies have confirmed that scopoletin manifests
growth-regulating, insecticidal, and antibacterial activities
(17, 18]. The biological functions influenced by scopoletin
are attributed to its various molecular targets, including
transcription factors, growth factors, and their receptors,
cytokines, enzymes, and genes that regulate cell proliferation
and apoptosis [19]. Thus, understanding the mode of action
of acaricides is crucial to identifying their molecular targets
[20]. Although the acaricidal activity of scopoletin and its
possible biochemical mechanism have been investigated, its
molecular mechanism or molecular target(s) against Tetrany-
chus cinnabarinus remains unknown.

Chitin is a polymer of 5(1,4)-linked N-acetylglucosamine,
which is the second most abundant natural polymer after
cellulose. Chitin is extensively distributed as a structural com-
ponent in arthropods, parasites, and microbes [21, 22]. Chitin
is also the principal structural component of arthropod
exoskeletons and the peritrophic membrane (PM) that lines
the epithelium and envelopes gut contents [23]. New chitin
is deposited and synthesized during insect growth and devel-
opment. However, a part of the old cuticle is degraded. When
insects or mites are treated with chitin synthesis inhibitors,
such as diflubenzuron (DFB) and allosamidin, symptoms
of death include development retardation, dysecdysis, and
shrinkage [24, 25]. Findings showed that mites treated with
scopoletin also exhibit similar death symptoms (Figure 6(c))
[26].

In arthropods, the crucial step of chitin biodegradation
pathway is associated with chitinases (CHITs). Insect CHITs,
which belong to family 18 of glycosyl hydrolases, mediate
digestion of chitin to chitooligosaccharides by hydrolyzing
chitin via endo-type cleavage. CHITs are crucial in growth
and development of insects and mites and act by hydrolyzing
chitin of insect integument and midgut. A total of 16, 22,
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FIGURE 2: Phylogenic analysis of TcCHITs. Maximum likelihood tree
constructed by MEGA 5.0. Phylogeny testing was conducted via
the bootstrap method with 1000 replications. Sequences used for
constructing the tree are listed in Supplementary Table S4.
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FIGURE 3: RT-qPCR evaluation of the developmentally specific expression patterns of the 12 CHIT genes in T. cinnabarinus. The following life
stages were analyzed: egg, larvae, nymph, and adult. Error bars represent the standard error of the calculated mean based on three biological
replicates. Different letters on the error bars indicate significant difference according to Duncan’s multiple tests (alpha = 0.05), that is, no
statistical difference between “A” and “A”; significant difference among “A,” “B,” “C,” and “D.” RPSI8 was used as the reference gene. (a) to

(1) were TcCHITI1~I12, respectively.

20, and 12 CHIT and CHIT-like protein genes have been
identified in Drosophila melanogaster, Anopheles gambiae,
Tribolium castaneum, and Tetranychus urticae, respectively
[27]. These genes have been classified into five or more
groups on the basis of amino acid sequence similarity and
phylogenetic analyses. CHIT and related proteins influence
molting, digestion, cell proliferation, and tissue remodeling
of mites and insects. Research showed that chitin is a critical
component of insect cuticle and PM and that each period
of growth and development of insects and mites requires a
certain amount of chitin [23]. CHIT is a safe target of novel
biological pesticides because chitin is absent in animals and
plants [28]. CHIT inhibitors, such as allosamidin, argifin, and
argadin, exert insecticidal effects by inhibiting CHIT activity,
which interferes with normal growth and development of
insects and mites [25, 29, 30]. Scopoletin has been reported
for its insecticidal and growth inhibitory effects against
Plutella xylostella, Spilarctia obliqua, and Diabrotica beetles [5,
17, 31]. In recent years, experimental evidence has shown that
scopoletin inhibits the development of Tetranychus cinnabar-
inus, indicating that this compound may affect degradation
of chitin by regulating expressions of CHIT genes [32].

Our laboratory investigated the transcriptomics of
Tetranychus cinnabarinus after treatment with scopoletin
or a control solvent (Table S1 and S2, resp.). Interestingly,
we observed that the CHIT gene family, which may be
involved in the acaricidal mechanism of scopoletin against
Tetranychus cinnabarinus, was differentially expressed. Thus,
this study aimed to assess the role of differential expression of
CHIT mRNA transcripts in acaricidal activity of scopoletin
against Tetranychus cinnabarinus using RNA interference
(RNAi). RNAi is a common mechanism of gene silencing
in eukaryotic organisms. In recent years, this technique has
shown considerable potential in controlling insect pests
by silencing vital genes. Functional roles of CHIT genes
in Tribolium castaneum and Panonychus citri were also
evaluated using RNAI, and several CHIT genes were found
to be essential for insect survival, molting, and development
[33, 34], thereby revealing functional specialization among
CHIT genes during molting. Thus, developing synthetic
inhibitors that target CHITs is important for insect pest
management.
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FIGURE 4: Expression profiles of TcCHITS transcripts after scopoletin treatment for 24 h at three different concentrations. Error bars represent the
standard error of the calculated mean based on three biological replicates. Water containing 0.1% Tween-80 was used as the control treatment
(CK). LC,, of DFB was used as the positive control. Asterisk (*) on the error bar indicates a significant difference between the treatment and
group (CK) according to t-tests, (P < 0.05) or (**P < 0.01). RPSI8 was used as the reference gene. (a) to () were TcCHITI~12, respectively.

In the present study, 12 full-length cDNAs of CHIT genes
from Tetranychus cinnabarinus were cloned and character-
ized. Patterns of gene expressions in four developmental
stages upon acaricidal treatment were analyzed. We adopted
double-stranded RNA (dsRNA) feeding as gene knockdown
strategy to investigate the role of CHITs in the acaricidal
action of scopoletin and DFB, a chitin synthesis inhibitor,
against Tetranychus cinnabarinus. This study demonstrated
that suppressing TcCHIT transcription increases susceptibil-
ity of T. cinnabarinus to scopoletin but reduces that to DFB.
This study also clarified the role of CHITs in the acaricidal
mechanism of scopoletin against Tetranychus cinnabarinus.

2. Materials and Methods

2.1. Mite Rearing. The Tetranychus cinnabarinus colony
used in this study was collected from cowpeas in Beibei,
Chongging, China, and has been maintained for more than
16 years without exposure to any pesticides [35]. The mites
were reared on potted cowpea seedlings (Vigna unguiculata)

in the insectary at 25+ 1°C, 50% + 5% RH, and 14: 10 h (L : D)
photoperiod.

2.2. Bioassays and RNA-seq Data. Food and Agriculture
Organization-recommended slip-dip method was used to
measure scopoletin (purity, 95%; Southwest University,
Beibei, Chongging, China) and DFB (purity, 98.5%; Taitan,
Shanghai, China) (Figure S1) toxicity against adult female
Tetranychus cinnabarinus [36]. We adopted the bioassay
procedure described by Ding et al. [35]. A total of 30 adult
female mites (3-5 days old) were briefly placed on their backs
on double-sided tape on glass. The mites were then dipped
into each test solution for 5s. Each dose was performed in
triplicate. The use of sterile distilled water with 0.1% (v/v)
Tween 80 and 3% (v/v) acetone was designated as control
treatment. The mites were observed under an anatomical
microscope after 48h of rearing under controlled growth
conditions as described in mite rearing. Mites that exhibited
immobility or irregular trembling of legs were considered
dead. Lethal and sublethal concentrations for subsequent
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FIGURE 5: Quantitative PCR detection of target gene expression after
dsRNA-TcCHIT feeding relative to expression levels after DEPC-water
treatment. dsGFP was adopted as negative control. RPSI8 was used
as the reference gene. Asterisk (*) on the error bar indicates a
significant difference between the treatment and group (DEPC-
water) according to ¢-tests, p < 0.05.

experiments were determined on the basis of log-probit anal-
ysis of concentration-mortality data. RNA-seq was employed
to analyze transcriptome changes in Tetranychus cinnabar-
inus treated with median lethal concentration (LCsy) of
scopoletin and the solvent against Tetranychus cinnabarinus
for 24 and 48 h, respectively. For scopoletin treatment, more
than 300 female adults were transferred onto three freshly
potted cowpea leaves, which were placed in a small Petri dish
containing water. The leaves were sprayed with scopoletin
solution with the abovementioned concentration. Sterile
distilled water with 0.1% Tween 80 and 3% acetone was
used as solvent for the control group. Three Petri dishes
from one independent experiment comprised a replicate,
and two biological replicates were used for RNA purification
and sequencing. All sequencing data were submitted to the
GEO website (https://www.ncbi.nlm.nih.gov/geo/) with the
accession number GSE92959 (unpublished data).

2.3. Total RNA Extraction, cDNA Synthesis, and TcCHIT
Cloning. Total RNA was extracted from 300 adult (3-5
days old) Tetranychus cinnabarinus females. Extraction was
performed by using RNeasy® Plus Micro Kit (Tiangen,
Beijing, China). To determine RNA quantity, the absorbance
at 260 nm and absorbance ratio of OD,g/,59 Were measured
by using a Nanovue UV-Vis spectrophotometer (GE
Healthcare, Fairfield, CT). RNA integrity was further
confirmed by 1% agarose gel electrophoresis. Reverse
transcription was performed by using a PrimeScript®
Ist Strand ¢cDNA Synthesis Kit (Takara, Dalian, China).
Synthesized c¢cDNA was stored at -20°C. To obtain

tull-length TcCHITs, specific primers were designed
and synthesized (Table S3) on the basis of complete
genomic sequences from sister species Tetranychus urticae
(http://bioinformatics.psb.ugent.be/orcae/overview/Teur).
Specific polymerase chain reactions (PCRs) were performed
in a C1000™ Thermal Cycler (BIO-RAD, Hercules, CA,
USA). PCRs were performed with a 25 uL reaction volume
with 2.5uL 10x PCR buffer (Mg®"-free), 2.0 uL dNTPs
(2.5mM), 2.5 uL MgCl, (25 mM), 1 uL cDNA templates, 1 4L
each primer (10 mM), 0.2 uL rTaq™ polymerase (TaKaRa),
and 14.8 uL. ddH,O. PCR program was 94°C for 3 min,
followed by 35 cycles of 94°C for 30 s, 48°C to 60°C (based on
primer annealing temperatures) for 30s, 72°C extension for
1min to 2min (based on the predicted length of amplified
products), and a final extension of 10 min at 72°C. Amplified
PCR fragments were gel-purified by using a gel extraction
mini kit (Tiangen, Beijing, China), ligated into pMD™ 19-T
vector (Takara, Dalian, China) and then transformed into
Trans5« competent cells of Escherichia coli (Tiangen, Beijing,
China). Recombinant plasmids were sequenced at the Beijing
Genomics Institute (Beijing, China).

2.4. Gene Characterization and Phylogenetic Analysis.
Nucleotide sequences of TcCHITs were edited by
DNAMAN 5.2.2. The deduced amino acid sequences of
12 CHIT proteins were aligned with ClustalW program
[31, 37]. Molecular weight and isoelectric point of the
proteins were calculated by using ExPASy Proteomics
Server  (http://cn.expasy.org/tools/pi_tool.html) [38].
The signal peptide was predicted by using SignalP 4.1
(http://www.cbs.dtu.dk/service/SignalP/) [39], and the
transmembrane region was analyzed by using TMHMM
Server (v.2.0) (http://www.cbs.dtu.dk/servicessTMHMM/)
[40]. N-glycosylation sites were predicted by using NetNGlyc
1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) [41].
The phylogenetic tree was constructed by using MEGA 5.0
via neighbor-joining method with 1000 bootstrap replicates
[42].

2.5. dsRNA Synthesis, dsRNA Feeding, and Knockdown of
TcCHIT Expression by RNAi. A set of T7 RNA polymerase
promoter primers (Table S3) were designed to amplify
160-600 bp lengths of target genes to generate PCR products
for in vitro transcription and dsRNA production (Table S3).
TcCHITS and green fluorescent protein (GFP) (ACY56286)
genes were amplified by PCR. The PCR program was as
described in Section 2.3. Recombinant plasmids were used
as templates. The GFP gene was used as negative control.
Amplified segments were gel-purified and used in application
of TranscriptAid T7 High Yield Transcription Kit (Thermo
Scientific, Lithuania, EU). dsRNAs were further purified by
using GeneJET RNA Purification Kit (Thermo Scientific,
Lithuania, EU). Size of dsRNA products was determined
by 1% agarose gel electrophoresis. Concentration of dsRNAs
was determined by using a spectrophotometer. dsRNAs
were stored at —70°C. Systemic delivery of TcCHIT dsRNAs
via leaf-disc feeding was used to knock down TcCHIT
expression. In this study, to investigate whether knock down
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FIGURE 6: The phenotypes of T. cinnabarinus after DEPC-water exposure (a), dSRNA-TcCHITS feeding (b), scopoletin (c), and DFB (d) exposure
for 48 h at the adult stage. Adult mites were treated with the LC,, of scopoletin and DFB. Note that dsRNA-TcCHITS feeding (b), scopoletin
(c), and DFB (d) exposure exhibited similar death symptoms: the adult individuals integument shrinkage or damage.
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FIGURE 7: Mortality rate of T. cinnabarinus after being artificially fed
with dsGFP or dsRNA-TcCHITS at the adult stage after 48 h. Means
were compared by ¢-tests, p < 0.05 (n = 3, including 180 mites).

of expression of target genes affects transcript levels of
nontarget genes via leaf-disc feeding method, the chitin
metabolic pathways related to two chitin synthetase genes
(tetur03g08510 and tetur08g00170, designated CHS) were
detected when a mixture of 12 TcCHIT dsRNAs was applied.
The mites were fed with a mixture of 12 different TcCHIT
dsRNAs for 48 h. Figure S2 shows the schematic diagram
of artificial feeding of dsRNA. Briefly, cowpea leaves were
cut to a feeding arena (2cm in diameter) and dehydrated
via incubation at 60°C for 3-5min. The leaves were then
treated with diethylpyrocarbonate- (DEPC-) water, dsSRNA-
GFP, or TcCHIT dsRNAs (1000 ng/ul) for 3-4h at room
temperature. After complete absorption of liquids, the leaves
were placed on wet filter paper. The leaf discs were then
placed on water-saturated sponges. Thirty female adults
(3-5 days old and starved for 24h) were placed on each
pretreated leaf-disc. The leaf discs were then placed upside
down on Petri dishes (7cm in diameter) to prevent mites
from escaping. The dsRNA-treated leaf discs, which were

infested with Tetranychus cinnabarinus, were placed under
controlled growth conditions as described in Section 2.1. The
mites were finally collected for subsequent experiments 48 h
after feeding.

2.6. Quantitative Real-Time PCR (qPCR). To detect TcCHIT
expression throughout the different life stages of mites,
approximately 2000 eggs, 1500 larvae, 800 nymphs, and 200
adults were collected per sample in triplicate. To quantify
TcCHIT expression in response to scopoletin and DFB
exposure, we collected 200 female adults per sample in
triplicate. To examine the effects of scopoletin and DFB
exposure on TcCHIT expression, female adults were treated
with scopoletin or DFB, with 0.1% (v/v) Tween 80 and
3% (v/v) acetone as surfactant. As in the slip-dip assay, LC,,,
LG5y, and LGy of scopoletin and LCy, of DFB corresponded
to 0.099, 0.374, 0.938, and 0.477 mg/mL, respectively. For
scopoletin and DFB exposure experiment, we adopted a
slightly modified version of the leaf-disc dipping method
described by Michel et al. [43]. More than 200 female adults
(3-5 days old) were briefly transferred to three freshly potted
cowpea leaves in a small Petri dish with water. Each detached
cowpea leaf was dipped for 5s in the test solution with
the abovementioned concentration. When the liquid had
dried around the mites, they were subjected again under
the abovementioned conditions. Sterile distilled water with
0.1% Tween 80 and 3% acetone was then used as the
control treatment (CK). After a 24 h interval, only surviving
female adult mites from the treated and control groups were
collected and frozen at —80°C for RNA extraction. Each
experiment was performed at least in triplicate and utilized
independent biological samples. To examine the effectiveness
of RNAi, approximately 200 female adult mites were collected
per sample 48 h after dsRNA feeding. Samples were prepared
in triplicate. The specific primers used for qPCR of TcCHITs
were designed by using Primer 3.0 (http://frodo.wi.mit.edu/)
(Table S3) [44]. RPSI8 (FJ608659) was used as the stable
reference gene for all qPCR assays (Table S3) [45]. qPCR
was performed by using a Mx3000P thermal cycler (Agilent
Technologies, Inc., Wilmington, NC, USA) on 20 uL reaction
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dsGFP (Normal phenotype)

dsTcCHITs (Lethal phenotype)

FIGURE 8: The phenotypes of T. cinnabarinus after being artificially fed with dsGFP or dsRNA-TcCHITs at the larval stage after 72 h. The artificial
feeding of dsTcCHITs resulted in a lethal phenotype: the larva individuals failed molting or undergoing dysecdysis, whereas mites fed with

dsGFP developed normally.
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FIGURE 9: Molting rate of T. cinnabarinus after being artificially fed
with dsGFP or dsRNA-TcCHIT at the larval stage after 72 h. Means
were compared by ¢-tests, p < 0.05.

mixtures containing 1 yL cDNA template (200 ng/uL), 10 uL
iQ™ SYBR® Green Supermix (BIO-RAD, Hercules, CA,
USA), 1 uL of each gene-specific primer (0.2 mM), and 7 uL
ddH,O. The optimized qPCR protocol used for amplification
was 95°C for 2 min, followed by 40 cycles of denaturation at
95°C for 155, 60°C for 30, and elongation at 72°C for 30s.
Melt curve analyses (from 60°C to 95°C) were performed to
ensure consistency of amplified products. Quantification of

expression level was analyzed using 2”**“" method [46].

2.7. Susceptibility Test of Tetranychus cinnabarinus to Acari-
cides after RNAi of TcCHITs. Sublethal doses of scopoletin
and DFB (LC;, and LCs, of scopoletin and DFB, resp.)
were applied in bioassays. We also adopted the slip-dip
method described above and the detailed bioassay procedure
described by Ding et al. [35]. LC;, and LCy, values of two
acaricides were used as diagnostic doses to compare changes
in susceptibility to acaricides in Tetranychus cinnabarinus
48 h after feeding of TcCHIT dsRNAs.

2.8. Statistical Analysis. All experiments included at least
three biological replicates. Differences in expression levels of
TcCHITS during the four developmental stages and mortality
rates were analyzed by one-way analysis of variance, followed
by Duncan’s multiple tests in SPSS (v.16.0, SPSS Inc., Chicago,
IL, USA), at alpha = 0.05.

3. Results

3.1 Analysis of Acaricidal Toxicity. Table 1 presents the LC,
values calculated for the two acaricides against adult Tetrany-
chus cinnabarinus. Estimated LCs, values of scopoletin and
DFB reached 0.938 and 0.477 mg/mL, respectively. These
results showed that DFB exhibited more significant acarici-
dal efficiency compared with scopoletin. However, LCg, of
scopoletin indicated its excellent toxic effects as a botanical
acaricide.

3.2. ¢DNA Cloning and Characterization of TcCHITs. The
deduced amino acid sequences and full-length ¢cDNAs of
12 TcCHITs, which contained open reading frames (ORFs),
were deposited in GenBank under the accession numbers
indicated in Table 2. Table 2 summarizes the lengths of
deduced amino acid sequences, predicted protein molecular
weights, and theoretical isoelectric points. A signal peptide
was detected at the N-terminal end of TcCHITI, TcCHIT2,
TcCHIT3, TcCHIT4, TcCHIT7, TcCHITS, TcCHITY,
TcCHITI0, TcCHITII, and TcCHITI2 (Figure 1). Meanwhile,
TcCHITI, TcCHIT2, TcCHIT3, TcCHIT, TcCHIT6, TcCHIT7,
TcCHITS, TcCHITY, TcCHITI10, TcCHITI1, and TcCHITI2
were predicted to contain a chitin-binding domain (Figure 1).
TcCHITI, TcCHIT2, TcCHIT4, TcCHITS, TcCHIT6, TcCHIT?,
TcCHITS, and TcCHIT9 were predicted to include one
catalytic domain; TcCHIITIO comprised three catalytic
domains; and TcCHIT3, TcCHIT11, and TcCHITI2 comprised
two catalytic domains. Furthermore, TcCHT3, TcCHITS,
and TcCHIT6 were predicted to contain one transmembrane
span domain. These genes, except for TcCHIT7, were also
observed to possess potential N-glycosylation sites (Figure 1).
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FIGURE 10: Knockdown of TcCHITS expressions increased susceptibility to scopoletin and reduced susceptibility to DFB in mites. (a, b) Mortality
of TcCHITs-silenced T. cinnabarinus to scopoletin at LC;, and LC,, respectively. (¢, d) Mortality of TcCHITs-silenced T. cinnabarinus to DFB
at LC,, and LC,, respectively. dsGFP was adopted as negative control. Error bars represent the standard error of the calculated mean based
on three biological replicates. Different letters on the error bars indicate significant difference according to Duncan’s multiple tests (alpha =
0.05) that is, no statistical difference between “A” and “A”; significant difference between “A” and “B”.

TasLE 1: Toxicity of acaricides against adult T. cinnabarinus after 48 h of exposure time.

Acaricide N LCq, (mg-mL'l)“ 95% CI Slope (+SE) ch p
Scopoletin 540 0.938 (0.576~2.292) 1.314 (+0.15) 6.321 0.097
DFB 540 0.477 (0.118~0.902) 2.254 (+0.24) 5.939 0.051

*LCs: median lethal concentration. °CI: 95% confidence interval. Chi-square testing linearity, alpha = 0.05.

3.3. Phylogenetic Analysis of TcCHITs. Phylogenetic anal-
ysis was performed by using MEGA 5.0 with the maxi-
mum likelihood method on the basis of deduced amino
acid sequences of TcCHITs and other known CHIT pro-
teins, including orthologs from the family of Tetranychus
urticae, Anopheles gambiae, and Drosophila melanogaster.
All CHIT sequences, which possess complete ORFs, were
obtained from the Tetranychus urticae genome and the
National Center for Biotechnology Information (Bethesda,
MD) (https://www.ncbi.nlm.nih.gov/) (Table S4). Results of
phylogenetic analysis revealed that CHIT genes for Tetrany-
chus cinnabarinus can be divided into four groups (Fig-
ure 2): TcCHIT4, TcCHIT5, TcCHIT6, TcCHIT7, TcCHITS,
and TcCHIT9 under Group I CHITs; TcCHTI, TcCHITII

in Group II CHITs; TcCHIT3, TcCHITI2 under Group III
CHITs; TcCHIT2, TcCHITIO0 under Group IV CHITs. CHIT
genes from Tetranychus cinnabarinus and Tetranychus urticae
clustered into the CHIT family and shared a single clade
(Figure 2). This result suggests that TcCHITs and TuCHITS are
evolutionarily related and possibly share similar physiological
functions.

3.4. Expression Patterns of TcCHITS in Different Develop-
mental Stages and upon Acaricide Treatment. QPCR was
performed to evaluate TcCHIT gene expression levels during
different developmental stages (egg, larva, nymph, and adult)
and upon acaricidal treatment. Results showed that the 12
CHIT genes (TcCHITI to -12) were expressed throughout
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TaBLE 2: Complete sequence information of the 12 CHIT genes of T. cinnabarinus.

Deduced full-length ~ Calculated full-length

Gene Accession numbers Coding sequence (bp) of amino acid of molecular (kDa) Isoelectric point
TcCHITI KT956964 1632 543 60.8 5.44
TcCHIT2 KT956965 1887 628 69.03 8.65
TcCHIT3 KT956966 2793 930 104.32 6.23
TcCHT4 KT956967 1593 530 59.75 6.07
TcCHT5 KT956968 1194 397 45.63 6.12
TcCHT6 KT956969 1272 423 49.05 8.27
TcCHIT7 KY084261 1233 410 47.34 9.19
TcCHIT8 KY084262 1260 419 48.51 9.64
TcCHITY KY084263 834 277 32.02 8.92
TcCHTIO KY084264 1881 627 69.55 6.65
TcCHIT1 KY084265 2748 915 99.42 6.46
TcCHTI2 KY084266 1293 430 48.75 6.98

all life stages, suggesting the involvement of TcCHITs in
biological processes in all developmental and growth stages.
Specifically, TcCHITS were highly expressed during the larval
and nymphal stages compared to in other developmental
stages; TcCHIT expression levels were the lowest during the
egg stage (Figure 3). Statistical analysis suggests that relative
expression levels of TcCHITS totaled 0.012, 0.056, 0.038, 0.027,
0.514,0.254, 0.029, 0.004, 0.019, 0.120, 0.126, and 0.004 during
the egg stage; 1.009, 0.845, 0.677, 1.009, 1.982, 1.006, 6.434,
1.318, 2.648, 5.192, 6.243, and 0.650 during the larval stage;
0.745, 2.130, 1.583, 1.024, 0.834, 0.672, 1.730, 0.078, 14.873,
2.902, 0.981, and 0.181 during the nymphal stage; and 0.029,
0.006, 0.175, 0.002, 0.275, 0.416, 1.504, 0.057, 0.051, 1.000,
1.000, and 0.129 during the adult stage (Figure 3).

Results of scopoletin treatment experiment showed that,
compared with the genes in the control group, all 12 CHIT
genes (TcCHITI to -12) were downregulated after 24h of
exposure to scopoletin (Figure 4). Statistical analysis suggests
that compared with expression levels of the control (CK),
relative expression levels of TcCHITS were 1.5-, 1.1-, 1.3-, 3.5,
1.7-,2.9-,1.3-, 0.9-, 1.3-, 2.3-, 1.6, and 1.7-fold lower at LC,,
doses of scopoletin; 1.8-, 4.8-, 2.3-, 6.0-, 1.3-, 12.4-, 2.3-, 7.7-,
5.2-,6.7-,3.7-, and 5.2-fold lower at LC;, doses of scopoletin;
and 1.8-, 1.4-, 1.1-, 1.7-, 1.2, 3.2-, 1.1, 1.0, 1.7-, 2.9-, 0.9-, and
2.2-fold lower at LCs,, doses of scopoletin. However, relative
expression levels of all the 12 CHIT genes were upregulated
and were 1.1, 1.2-, 1.1-, 1.3, 1.1-, 1.2-,1.3-, 1.7-, 1.6- 1.3-, 1.5, and
1.1-fold higher than those in the control (CK) after treatment
with DFB at LCs.

3.5. RNAi via dsRNA Knockdown. To validate existence
of offsite effects, expressions of all 12 CHIT genes and 2
CHS genes were detected when a mixture of 12 TcCHIT
dsRNAs was applied (Figure 5). mRNA expressions of
TcCHITs significantly decreased but not those of TcCHSs
when TcCHIT dsRNAs were applied at the adult stage in mites
(Figure 5). Results showed that transcript levels of TcCHITs
significantly decreased to 57.30%, 53.87%, 32.23%, 60.37%,
72.32%, 61.78%, 55.49%, 70.14%, 81.16%, 51.02%, 77.57%, and

35.50% compared with transcript levels of TcCHITS after
DEPC-water treatment (Figure 5). No significant difference
in transcript efficiency existed between the two controls
(water and dsGFP) (Figure 5). These results indicate the
absence of offsite effect of RNAi experiments in this study.
At 48h after feeding of TcCHIT dsRNAs, 53.3% of mites
died because of integument shrinkage or damage (Figures
6(b) and 7). By contrast, the mites fed with dsGFP showed
4.7% mortality. These results reveal successful knockdown of
TcCHIT transcripts by RNAI in Tetranychus cinnabarinus.

To explore the biological functions of TcCHITs, RNAi
method was applied to knock down TcCHITS expression at
the larval stage. Consequently, at 48 h after dsSRNA feeding,
92.7% of mites died because of failure to molt or to undergo
dysecdysis (Figures 8 and 9, resp.). By contrast, the mites
fed with dsGFP exhibited only 1.4% mortality. At 72h after
dsRNA feeding, the remaining mites still failed to molt after
treatment with TcCHIT dsRNAs, whereas all the mites in the
control group successfully turned into nymphs. At 72 h after
dsRNA feeding, molting rate reached 7.3% during treatment
of TcCHITs dsRNAs and totaled 98.6% in dsGFP treatment
(Figure 9).

3.6. Susceptibility Test of Tetranychus cinnabarinus to Acari-
cides after RNAi of TcCHITS. Susceptibilities to the two aca-
ricides at 48 h after TcCHITs dsRNA feeding at the adult stage
were detected by the slip-dip method. TcCHITS transcripts in
the LCy, and LC;, assays of scopoletin were knocked down
by RNAI in Tetranychus cinnabarinus. Mortality significantly
increased to 16.92% and 20.12% in the mites fed with
TcCHITs dsRNAs compared with mites treated with DEPC-
water (Figure 10). Contradictory results were generated when
TcCHITs transcripts in the LCy, and LCs, assays of DFB
were knocked down by RNAIi in Tetranychus cinnabarinus.
Mortality significantly decreased to 18.43% and 14.88% in
the mites fed with TcCHITs dsRNAs compared with those
treated with DEPC-water (Figure 10). No significant differ-
ence in mortality existed between DEPC-water and dsRNA-
GFP treatments (Figure 10). These results demonstrate that
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RNAi of CHIT genes increased susceptibility of Tetranychus
cinnabarinus to scopoletin but reduced that to DFB. These
results indicate that CHIT genes may play a crucial role in
the acaricidal effects of scopoletin and DFB.

4. Discussion

As an important phenolic phytoalexin in plants, scopoletin
features numerous pharmacological activities, such as anti-
tumor activity. Scopoletin can affect and disrupt growth,
proliferation, metastasis, and metabolism of tumor cells and
induce apoptosis [47, 48]. However, the potential acaricidal
mechanism of scopoletin as a plant-derived acaricide against
Tetranychus cinnabarinus remains unknown.

Identification and characterization of CHIT genes from
mites will aid in determining the involvement of CHITs in
responses of mites to specific acaricides. Findings of the
present study will also help us to better understand the
biological functions of CHITs. We cloned and characterized
12 full-length CHIT c¢DNAs in Tetranychus cinnabarinus
(TcCHITI to -6; Wang et al. [26]). In 1993, full-length cDNA
of the first insect CHIT gene was cloned and identified
from the tobacco hornworm Manduca sexta [49]. Since
then, CHIT genes of various insects have been cloned
and identified. The encoded CHITs in Tribolium castaneum
have been divided into eight subgroups on the basis of
sequence similarity and domain architecture [50]. Structural
analysis of TcCHITs demonstrated that these genes possess
a multidomain structural organization, which includes 1-3
catalytic domains (GH-18 domain), 0-1 cysteine-rich chitin-
binding domains (peritrophin-A domain/CBM-14 domain),
and serine/threonine-rich regions that can be heavily gly-
cosylated (Figure 1). TcCHITs are predicted to feature a sig-
nal peptide (TcCHT1, TcCHT2, TcCHT3, TcCHT4, TcCHT7,
TcCHTS, TcCHTY, TcCHTIO0, TcCHTII, and TcCHTI2) or
a transmembrane (TcCHT3, TcCHTS5, and TcCHT6) span
domain as they are targeted either to the extracellular space
or sorted into the plasma membrane, in both cases facing car-
bohydrates of the extracellular matrix (Figure 1). Differences
in their domain architecture indicate distinctive biological
functions for specific CHITs. For example, Xia et al. [34]
reported that CHITS5, TcCHT7, and TcCHT10, which are also
expressed at all developmental stages, play critical roles in
digesting the old pupal cuticle, wing/elytra extension, and
molting in Tribolium castaneum, respectively.

TcCHIT transcripts were detected in all four tested
developmental stages of Tetranychus cinnabarinus, indicating
that the CHIT gene family plays an important role during
the entire life cycle of mites. However, TcCHIT expression
levels during larval and nymphal stages were significantly
higher than in other developmental stages of Tetranychus
cinnabarinus, agreeing with the results of Yang et al. [51]. Our
present results showed that the CHIT gene family exhibits
different developmental patterns of expression in Tetranychus
cinnabarinus. Expression level of TcCHIT9 during the larval
and nymphal stages was approximately 250-fold higher than
those during the egg and adult stages, whereas TcCHTS3,
TcCHT7, TecCHTIO0, and TcCHT1I were approximately 10-fold
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higher. Differences in expression levels may be related to the
structure and function of CHIT genes. Different developmen-
tal patterns of expression indicate functional specialization
in the CHIT gene family of Tetranychus cinnabarinus during
molting. In addition, RNAI studies in Tribolium castaneum
have provided strong experimental evidence for different
developmental patterns of expression and tissue-specific
expression of different CHIT genes [34].

Results of the present study further showed that 24h
after scopoletin exposure, TcCHIT expression levels were
downregulated and that the challenge of inhibiting TcCHITI,
TcCHT6, TcCHT7, TcCHTY, and TcCHTIO expressions was
more significant than that of inhibiting the remaining CHIT
genes in Tetranychus cinnabarinus. Specifically, statistical
analysis suggests that TcCHIT expression levels were down-
regulated more significantly with LC;, dose of scopoletin
than with LC,, and LCs, doses of scopoletin than those
of the control. This result suggests the possible benefits
of using appropriate doses of scopoletin. This study also
showed that TcCHITs expression levels were significantly
downregulated during the adult stage of mites. The preceding
results indicate that the acaricidal mechanism of scopoletin
may degrade chitin biodegradation in Tetranychus cinnabar-
inus by decreasing CHIT gene expression. However, relative
expression levels of TcCHIT8 and TcCHT?9 were significantly
upregulated after DFB treatment (positive control). Several
studies have shown that the action mechanism of DFB
may occur through direct inhibition of chitin synthase
activity; inhibition of zymogen activation process; activation
of CHITs; interference with hormonal balance; interference
with nerve-secreting cells of the brain; and interference
with nucleic acid, protein synthesis, and metabolism in
several different insect species [52]. However, the acaricidal
mechanism of DFB remains unknown. These results suggest
that TcCHITs play an essential role in acaricidal mechanisms
of scopoletin and DFB in Tetranychus cinnabarinus.

In this study, we employed RNAI to investigate the bio-
logical roles of mite CHIT genes in Tetranychus cinnabarinus.
RNAi has become an increasingly common method to knock
down expression of genes of interest in insects and mites.
RNAI also features potential applications in screening and
identification of pharmaceutical targets. Previous studies
have demonstrated that expressions of specific CHIT genes in
Tribolium castaneum can be knocked down by microinjection
assays with gene-specific RNAi [34]. For example, Xia et al.
[34] reported that specific knockdown of CHTI0 transcripts
of Tribolium castaneum, which contains multiple catalytic
domains, prevented embryo hatching, larval molting, pupa-
tion, and adult metamorphosis. In this study, results of gPCR
analyses showed that TcCHIT transcript levels significantly
decreased to 30%-80% in mites 48h after feeding with
TcCHITs dsRNAs. In this study, TcCHITS silencing in larvae
and adult samples resulted in high mortality rate. These
results not only demonstrated successful dsRNA-mediated
knockdown of TcCHITS transcripts but also showed suitabil-
ity of dsRNA delivery via the leaf-disc method for RNAi in
Tetranychus cinnabarinus.

Several studies have shown that activation or inhibition
of CHITs kills insects or mites. Ding et al. [53] reported
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that mortality of M. sexta larvae was higher when treated
with a sublethal dose of Bacillus thuringiensis (Bt) toxin
on transgenic tobacco lines that express M. sexta CHIT
(Group I). This result suggests that overexpression of CHIT
increases susceptibility of M. Sexta to Bt. In addition,
Sakuda et al. [25] showed that allosamidin strongly inhibits
insect CHITs and exerts insecticidal effects by preventing
molting of insect larvae and pupae. These results indicate
that inhibition of CHITs can lead to insect death. Our
results showed that TcCHITs play a similar role in acaricidal
mechanisms of scopoletin and DFB. Expressions of TcCHITS
were downregulated 24 h after scopoletin exposure. Specif-
ically, scopoletin susceptibility increased when TcCHITS in
LCs, and LCs, assays were suppressed via RNAi. These
results suggest that the acaricidal mechanism of scopoletin
may transpire by inhibition of expressions of CHIT genes.
However, TcCHIT expressions were upregulated 24 h after
DFB treatment. Meanwhile, DFB susceptibility decreased
when TcCHIT transcripts were knocked down by RNAi
in Tetranychus cinnabarinus. These results indicate that the
acaricidal mechanism of DFB may transpire by activation
of CHIT gene expression. The function of CHIT genes of
Tetranychus cinnabarinus has not been reported at present.
However, Zhang et al. [27] reported that CHITs are closely
related to insect molting in Tribolium castaneum, suggesting
that acaricidal mechanism of scopoletin and DFB possibly
prevents mites from undergoing normal growth and develop-
ment by destroying the integument of Tetranychus cinnabar-
inus. This paper is the first to report that knockdown of
CHIT gene expression in Tetranychus cinnabarinus increases
susceptibility to scopoletin but reduces that to DFB.
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